把握宏观脉络 洞悉行业趋势

GRASP THE MACRO CONTEXT INSIGHT INTO INDUSTRY TRENDS

立即咨询

铝镁合金技术工艺发展趋势分析

发布时间:2019-12-09 09:02:09

第一节 产品技术发展现状

1、铸造镁合金

1)压铸

压铸是镁合金最主要、应用最广泛的成形工艺。镁合金有优良的压铸工艺性能:镁合金液粘度低,流动性好,易于充满复杂型腔。用镁合金可以很容易地生产壁厚1.0mm~2.0mm的压铸件,现在最小壁厚可达0.6mm。镁压铸件的铸造斜度为1.5,而铝合金是2~3度。镁压铸件的尺寸精度比铝压铸件高50%。镁合金的熔点和结晶潜热都低于铝合金,压铸过程中对模具冲蚀比铝合金小,且不易粘型,其模具寿命可比铝合金件长2—4倍。镁合金件压铸周期比铝件短,因而生产效率可比铝合金提高25%。镁合金铸件的加工性能优于铝合金铸件,镁合金件的切削速度可比铝合金件提高50%,加工耗能比铝合金件低50%。生产经验表明由于生产效率高,热室压铸的镁合金小件的总成本低于冷室压铸的铝合金同样件。

压铸镁合金可按其成分分为四个系列:AZ(Mg—AL—Zn)系列(AZ91)、AM(Mg—AL—Mn)系列(AM60、AM50)、AS(Mg-A1-Si系列(AS41、AS21)、AE(Mg-AL-RE)系列(AEA2)。

AZ系列合金AZ91具有良好的铸造性能和最高的屈服强度,其压铸件广泛应用于汽车座椅、变速箱外壳等多种形式部件。AM系列合金AM50、AM60具有较高的延伸率和韧性,用于抗冲击载荷、安全性高的场合如车轮、车门等。AS系列的镁合金AS41、AS21和AE系列的AFA2是20世纪70年代开发的耐热压铸镁合金。

镁合金压铸中广泛采用冷、热室压铸方法。一般薄壁铸件采用热室压铸机,厚壁铸件采用冷室压铸机。镁合金热室压铸机是目前国外使用数量最多的镁合金压铸专用设备,具有生产效率高,浇注温度低,注型寿命长,易实现熔体保护等特点。主要缺点是设备成本和维修费用较高。

镁合金压铸时,合金液冲填压型时的高速湍流运动,使腔内气体无法排出,会导致组织疏松,甚至铸件表面鼓包或变形。压铸工艺参数如压力、速度、熔体温度、模具温度等对铸件性能都有显着影响。许多新压铸方法,包括真空压铸、充氧压铸和挤压铸造等一定程度上克服了以上缺点,减少了铸件组织疏松和气孔等缺陷,提高了铸件致密度。美国俄亥俄州精密成型公司C.Rozak介绍了镁合金的金属压缩成型技术(MCF)在整个铸件表面加压的成型方法,在压力下凝固,改善了微观组织,减少了晶粒尺寸和孔隙率,铸件致密均匀,可用于生产性能要求高、形状复杂的铸件。

2)熔模铸造

熔模铸造是目前国际上较为先进的铸造技术之一。熔模铸造从原理上讲适合于制备小体积高精密的铸件。目前它已用于生产铝合金甚至镍基超合金。在镁合金铸件的发展历程中,有些工件结构复杂,一些部位壁厚非常薄,并且对表面粗糙度和尺寸公差要求严格,则可以采用熔模铸造来生产。

采用熔模铸造法生产铸件时具有不需取模、无型芯和无分型面等特点,因而其铸件的尺寸精度和表面粗糙度接近于熔模精铸件。此外,熔模铸造为铸件结构设计提供了充分的自由度,原来多个零件组装的构件,可以通过分片制型后粘合成一体实现整体浇注,因此可以经济地生产许多复杂零件。但是,熔模铸造的设备投入和单位铸造成本高,工件尺寸有限。此外,镁与熔模铸型材料和粘结材料用氧化物陶瓷之间存在高活性反应,从而大大地限制了其应用。生产镁合金薄壁件时需要预热铸型以便填充薄壁部位,然而预热温度和浇注温度过高将促进镁合金与铸型间的反应。有 研究 表明采用低的铸型预热温度时,ZrO2是一种很有前景的铸型材料。

3)消失模铸造

消失模铸造是一种近无余量、精确成型的新型铸造技术,它具有许多的优点,如,型砂不需要粘结剂、铸件落砂及砂处理系统十分简便,容易实现清洁生产;铸件没有分型面及起模斜度,可使铸件的结构高;加工装配时间减少,铸件成本可下降10%—30%等等。

初步试验 研究 表明,镁合金的特点非常适合消失模铸造工艺,因为镁合金的消失模铸造除具有以上特点外,还具有如下独特的优点:①镁合金在浇注温度下,泡沫模样的分解产物主要为烃类、苯类和苯乙烯等气雾物质,它们对冲型成型时极易氧化的液态镁合金具有自然的保护作用;②采用干砂负压造型避免了镁合金液与型砂中水分的接触和由此而引起的铸件缺陷;③与目前普遍采用的镁合金压铸工艺相比较,其投资成本大为降低,干砂良好地退让性减轻了镁合金凝固收缩时的热裂倾向;金属液较慢和平稳的充型速度避免了气体的卷入,使铸件可经热处理进一步提高其力学性能。所以,镁合金的消失模铸造具有较巨大的应用前景。

镁合金的凝固和化学性能方面的特点,使得镁合金在消失模铸造中产生了很多问题,特别是浇不足和氧化燃烧。由于镁合金低的密度和比热容,气化泡沫模样所需要的热量来自高温液态镁合金的潜热从而阻碍了充型,而且镁合金的结晶温度范围宽,因此消失模充型时金属液的压头作用小,极易过早停止流动,产生浇不足缺陷。镁合金的化学反应可能通过使用在镁合金砂型铸造工业中应用的阻燃剂和辅助使用高孑L隙率的模样涂料进行控制,还可以采用可控气氛进行防止浇注时的氧化燃烧。另外,高密度的泡沫模样吸收更多的热量,产生更多的液态和气态产物,降低了镁合金的充型性。但泡沫模样在浇注过程中产生的还原性气氛降低甚至阻止镁合金的氧化燃烧,保证了镁合金在加工成型过程中的安全性,也有利于保证镁合金熔体的洁净优质。

2、变形镁合金

1)塑性变形

变形镁合金中,常用的合金系是Mg—Al—Zn系与Mg—Zn—Zr系。Mg—Al—Zn系变形合金——般属于中等强度、塑性较高的变形材料,铝在镁中的含量为0—8%,典型合金为AZ31、AZ61和AZ81合金,由于Mg—Al合金具有良好的强度、塑性综合性能,而且价格较低,因此是最常用的合金系。Mg—Zn—Zr系合金一般属于高强度材料,其变形能力不如Mg—Al系合金,一般采用挤压工艺生产,典型合金为ZK60合金。属高强度变形镁合金的还有Mg—Mn系,其最主要的优点是具有优良的抗蚀性和可焊性,但铸造性能差,收缩率大,有热裂倾向,应用较少。另外,添加Nd、Th、Yb、Sc和Mn等元素可显著提高变形镁合金的耐蚀性。

目前镁合金的塑性成形过程主要为锻造和挤压,少量为轧制成形,且均需采用热加工方式。因此,变形温度是重要参数,同时变形速率和应力状态也是重要的考虑因素。

1)锻压成形:镁合金锻造性能取决于3个因素:合金的凝固温度、变形速率及晶粒大小。为了保证良好的加工性能必须采用具有可锻性的AZ和ZK系镁合金坯料或坯棒。这两系合金可通过添加晶粒细化剂和合金元素得到满意的晶粒尺寸。但铸造组织的晶粒度一般不符合锻造要求,须先将铸锭加以挤压,得到锻造所需晶粒尺寸,再以高变速率锻造成形。镁合金在其固相线温度以下55℃范围内进行锻造,锻造温度过低可能形成裂纹。液压机和低速机械压力机是其模锻的常用设备。

2)挤压成形:镁合金可以挤压成各种管材、棒材和型材。包括带凹角和暗槽的型材,大直径和变截面厚度的薄壁管等难加工的产品。挤压材料也是AZ和ZK系镁合金,温度一般控制在300℃—460℃之间,具体温度的选择还和特定的合金牌号和挤压形状有关。因为镁在变形过程中会产生大量热,所以挤压过程中必须充分冷却,否则合金温度可能超过固相线温度而导致开裂。

3)轧制成形:铸造成平面形状且有圆形边缘的镁锭可以用来进行厚板和薄板的轧制。一般镁合金厚板厚度范围为11.0mm—70mm,薄板厚度为0.8mm—10mm。镁合金的冷轧性能不佳,一般厚板可以在热轧机上直接生产,而薄板一般采用冷轧和温轧两种方式生产。

镁合金热轧时,一方面要保证铸态组织得到充分变形,达到改善组织的目的,因此要有一定的变形量;另外,由于多晶镁合金滑移系少,晶粒不易产生宏观屈服而易在晶界产生大的应力集中,合金很容易发生晶间断裂。试验 研究 发现开坯时首次变形量控制在压下量s二30%左右最合适。镁合金板材在轧制以后一般要进行退火及热处理,加工组织发生再结晶。其退火温度应选择在靠近完全再结晶温度范围内。

2)超塑性变形

超塑性是指晶体材料在拉伸时表现出大的应变。已有的 研究 结果表明,镁合金在一定条件下不但具有很高的塑性,而且甚至出现明显的超塑性。当晶粒细化到一定程度(约10—6m),镁合金可获得相对的超塑性。通常超塑性现象主要发生在高温(约等于0.7Tm,Tm为材料的熔点),应变速率相对较低,工业生产中受到限制。Langdon提出了超塑性变形的两个必要条件:①局部缩颈受到限制;②空洞内部相互连接受到抑制。目前,采用高应变速率超塑性成形和低温超塑性成形获得细小晶粒。其中,等通道角挤压技术是低温超塑性的一种方法,在200℃温度下可使AZ91镁合金延伸率达到675%。

3)半固态成形

半固态成形技术,是在金属凝固过程中,将结晶过程控制在固—液两相共存温度,并通过剧烈搅拌破碎枝晶组织,从而获得一种金属母液中悬浮一定固相成分的固—液?昆合浆料,再采用压铸、模锻等成形加工工艺进行的金属成形技术。半固态加工,是一种新型、先进的工艺方法,与传统液态铸造成形相比,具有成形温度低(镁合金可降低100℃左右),延长模具的寿命,改善生产条件和环境,细化晶粒,减少气孔、缩孔,提高组织致密性,提高铸件质量等优点,被认为是21世纪最具有发展前景的精密成形技术之一。根据工艺流程的不同,半固态成形通常分为流变铸造(Rheocasting)和触变铸造(Thixocasting)两类:流变铸造是对冷却过程中的金属液进行搅动,将形成的固相枝晶破碎,形成一定固相分数的半固态金属浆料,然后将浆料注入压铸机或挤压机内成形(俗称“一步法”);而触变铸造是先由连铸等方法制得具有半固态金属组织的锭坯,然后切成所需长度,用二次加热装置再加热到半固态状态,最后移送至压铸机等再压铸或挤压成形(俗称“两步法”)。

半固态成形过程一般包括非枝晶组织的制备、二次加热和半固态成形3个步骤。制备非枝晶组织的坯料是半固态成形的前提,机械搅拌法是最早采用的方法,其设备构造简单,但工艺参数不易控制,很难保证产品质量的一致性。目前工业化生产中,应用最为广泛的方法有:电磁搅拌法、应变诱发熔化激活法(SIMA)和半固态等温热处理法(SSIT)以及化学晶粒细化法等。

4)其它成形方法

镁合金材料的其他制备方法还有挤压铸造法,粉末冶金法,喷射沉积法,真空浸渍法以及目前仅用于Mg—Li基复合材料的薄膜冶金法等。

 

第二节 产品工艺特点或流程

铝合金型材的工艺流程


 

第三节 国内外技术未来发展趋势 分析

1、铸造材料

开发优质铝合金材料,特别是铝基复合材料。 研究 铝合金中合金化元素的作用原理及铝合金强化途径。 研究 降低合金中Fe、Si、Zn含量,提高合金强韧性的方法及合金热处理强化的途径。

开展铸造合金成分的计算机优化设计,重点模拟设计性能优异的铸造合金,实现成分、组织与性能的最佳匹配。

2、合金熔炼

铝合金铸件生产中,着重解决无污染、高效、操作简便的精炼技术、变质技术、晶粒细化技术和炉前快速检测技术,针对不同牌号、不同用途的合金,采用计算机数值模拟技术 研究 固溶、时效处理工艺参数的优化,以发挥材料潜能、提高材料性能。引进和消化RID、FI等先进精炼技术,提高铝合金熔炼水平。

深入 研究 镁合金熔炼工艺,加强镁合金熔炼用无污染高效熔剂的系列化商品化和气体保护技术开发,强化高纯铸造镁合金材料、镁-稀土耐热铸造镁合金材料及镁基复合材料的铸造、回收、重熔技术的开发,进一步加强镁合金压铸、挤压铸造技术的 研究 和开发,以适应我国汽车业发展的需求。

3、特种铸造

深入 研究 压铸充型、凝固规律,开发新型压铸设备及控制系统,改善液面加压系统性能以满足工艺要求;开展半固态合金压铸及新型压铸涂料 研究 ;开发新压铸技术及金属基复合材料、镁合金、高铝锌基合金等压铸新合金材料;采用快速原型制造技术制作压铸模。开发能与工艺密切结合可满足各种工艺参数要求的低压铸造设备;推行低压铸造模具CAD、合金液填充和凝固过程模拟,使模具满足充填铸型时平稳流动、顺序凝固、及时、充分补缩的要求;开发高度自动化的低压铸造机和高可靠性零部件;开发复杂、薄壁、致密压铸件生产技术,推动低压铸造向差压铸造的发展。

 

免责申明:本文仅为中经纵横 市场 研究 观点,不代表其他任何投资依据或执行标准等相关行为。如有其他问题,敬请来电垂询:4008099707。特此说明。

您的需求

YOUR REQUIREMENTS

联系人:

职务:

电话:

邮箱:

您的需求:

提 交
中经咨询

咨询热线:

400-8790-365  400-8099-707

服务邮箱:vip@jihuashu.org.cn

单位官网: http://www.jihuashu.org.cn

地址(北京):北京朝阳区光华路东方梅地亚中心A座15层

地址(上海):上海杨浦区军工路1599号1栋5层

ICP 备案:沪ICP备18002139号-5

主营业务

报告编制
可行性报告
商业计划书
项目建议书
立项申请报告
稳评报告
能评报告
项目方案
IPO募投可研
项目申请报告
企业融资报告
规划设计
乡村振兴规划
特色小镇规划
产业规划
文化旅游
十四五规划
园区规划
田园综合体
乡村旅游
康养产业
景观设计
科技成果评价
科技成果评价
项目立项评估
项目结题评价
知识产权评估
成果价值评估
人才团队评价
扶持资金申请
农业资金申请
发改委资金申请
工信资金申请
科技资金申请
网站地图
专项调研
市场调研
消费者调研
企业调研
商业计划书(案例)
商业计划书(模板)
客服微信
温馨提示
提交成功,谢谢!
提交失败
联系人不能小于两个汉字!
提交失败
手机号格式错误!
提交失败
需求内容不能少于10个汉字!